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GALATIUS–MADSEN–TILLMAN–WEISS

SØREN SKEIE

Abstract. In [3], Galatius, Madsen, Tillman, and Weiss determined the
homotopy type of the classifying space of the embedded cobordism category.
This result is now known as the Galatius–Madsen–Tillman–Weiss theorem or

GMTW for short. We give a partial exposition on the proof of GMTW given in
[4, §3], without tangential structures. The proof relies on certain moduli spaces

of manifolds, defined using a family of sheaves Ψd,n of topological spaces, which

allow us to restate GMTW. Using these sheaves, the proof can be broken into
three steps, we call: scanning, GMTW, and delooping. Unfortunately, due to

lack of time, we have resorted to a rougher sketch, especially of the delooping

argument, than the author would have wanted.
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Introduction

This thesis attempts to give a detailed exposition of some parts of a proof of the
Galatius–Madsen–Tillman–Weiss theorem without tangential structures (GMTW)
determining the homotopy type of the classifying space of the embedded cobordism
category Cd:

Theorem (GMTW). The spaces BCd and Ω∞−1MT (d) are weakly equivalent.

GMTW was originally proven in [3] by Søren Galatius, Ib Madsen, Ulrike Tillman,
and Micheal Weiss from 2009, by constructing such a weak equivalence. This deter-
mines the homotopy type of BCd, as standard machinery computes the homotopy
type of the space Ω∞−1MT (d).

Our exposition follows a different proof, given in [4, §3] by Søren Galatius and
Oscar Randal-Williams from the following year of the, slightly stronger:

Main Theorem (4.2.1). There is a weak equivalence BCd(Rn) ≃ Ωn−1 Th(γ⊥d,n).

We give a mathematical outline of the proof in the following section, which serves
as our mathematical introduction to the thesis providing an overview of the main
sections. Let us here account for the appendices: the proof we give, relies heavily
on the use of certain moduli spaces, constructed using a family of sheaves Ψd,n. A
detailed exposition on these sheaves is given in appendix C. For the most part, we
will take the language of categories for granted, though the first two subsections of
appendix A contains definitions from the less common and more topological dialect
we use. The rest of appendix A defines En-algebras, allowing us to address our
shortcomings on the “delooping” argument of the proof. Appendices A and B, the
former on categories and operads and the latter on sheaves, are barren deserts of
definitions only meant for venturers with a specific goal in mind. Finally, appendix D
contains some of the theory, the author of this thesis found most fun to re-formulate,
from when he was trying to follow the original proof given in [3].

We would be amiss, if we did not mention that this thesis is also very inspired
by unpublished lecture notes on diffeomorphism groups of manifolds by Alexander
Kupers, and that applications of GMTW include: the Barratt–Priddy–Quillen–Segal
theorem, Madsen and Weiss’ generalized Mumford conjecture, as well as classifying
(invertible) topological quantum field theories.

Notation & terminology. In this thesis, A ⊂ B means a ∈ A ⇒ a ∈ B. We will
use ∅ to denote ∅ when we think of ∅ as a manifold and remark that ∅ has every
dimension.

Disclaimer. The author does not claim any originality in this project. He chose this
topic for his thesis simply out of the desire to understand some of it. Hence the goal
was never to attempt to write a “great” exposition on this proof of GMTW. There
has also not been any attempt from the author to be historical. Being unaware of
the proof of GMTW given in [4], he originally attempted to follow the proof given
in [3]. It was not until 26th October, 2024 he first laid eyes on [4], which is a major
reason this thesis only contains a partial exposition.
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Outline

We begin with a sketchy outline of the proof of our main theorem, given in the
following sections. For this, we must first introduce cobordisms:

Definition. Let d ∈ N and let M0 and M1 be closed (d− 1)-dimensional smooth
submanifolds of Rn. A d-dimensional cobordism W of length t from M0 to M1

is a d-dimensional, compact, smooth submanifold of [0, t] × Rn for some t ∈ R>0

satisfying

i) W ∩ ({0} × Rn) = {0} ×M0 and W ∩ ({t} × Rn) = {t} ×M1;
ii) ∂W = {0} ×M0 ∪ {t} ×M1;
iii) there exists ϵ > 0 such that

W ∩ ([0, ϵ)× Rn) = [0, ϵ)×M0 and W ∩ ((t− ϵ, t]× Rn) = (t− ϵ, t]×M1. ⌟

Classically, cobordisms can be used to define a coarse equivalence relation on
manifolds: the existence of a d-dimensional cobordism between manifolds forms an
equivalence relation on the set of closed (d− 1)-dimensional smooth submanifolds
of Rn.

More importantly for this thesis, d-dimensional cobordisms form the morphisms
of a category: We can form a category with objects the closed (d− 1)-dimensional
smooth submanifolds of Rn, with non-identity morphisms the cobordisms between
them as just defined, and with composition given by “concatenation” of cobordisms.
In this thesis, we will work with a more sophisticated version of this cobordism
category, which we denote Cd(Rn). Our version is a topological category, and its
full construction is given in construction 1.2.6.

The main theorem of this thesis, is that there is a weak equivalence

BCd(Rn) ≃ Ωn−1 Th(γ⊥d,n),

where Th(γ⊥d,n) is the one-point compactification of the space of d-dimensional affine
subspaces of Rn. This equivalence is natural in n. There are standard techniques to
compute the homotopy type of Th(γ⊥d,n), so we will view this as determining the

homotopy type of BCd(Rn).
Using naturality in n, GMTW follows by noting that

BCd = B colim
n→∞

Cd(Rn) ∼= colim
n→∞

BCd(Rn) ≃ colim
n→∞

Ωn−1 Th(γ⊥d,n) =: Ω
∞−1MT (d).

We will follow the proof given in [4, section 2–3], which uses moduli spaces. In
our case, this means we will use spaces in which every point is a d-dimensional
smooth manifold embedded in an open subset of euclidean space: For an open subset
U ⊂ Rn, we construct a space Ψd(U) with underlying set the set of closed subsets
of U which are smooth d-dimensional manifolds without boundary. The spaces
Ψd(U) have a rather technical-to-construct topology by Galatius–Randal-Williams,
which the author has taken to calling the myopic topology. Due to the opacity of
these technicalities we have moved them to an appendix, namely appendix C, and
refer the thorough, or morbidly curious, reader to it. For now, we hope the more
impatient reader will content themselves with the following overview of the most
relevant qualities, for this thesis, of the topology, as well as how we will use it.
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2 SØREN SKEIE

Relevant qualities of the myopic topology. As mentioned, the topologies assemble to
a sheaf Ψd on Rn. Aside from this, for a topological space X, continuity of a map
X −→ Ψd(U), is equivalent to continuity of the compositions

X −→ Ψd(U)
πK−−→ (Ψs|U )K

for every compact subset K ⊂ U , where (Ψs|U )K is the space of germs near K,
i.e. two manifolds project to the same germ near K, if they agree on an open
neighbourhood of K. In this sense, the myopic topology only sees what happens on
compact subspaces; hence the name. We will also use theorem C.2.8 which states
that the function

Emb(U, V )×Ψd(V ) −→ Ψd(U) given by

(j,M) 7−→ j−1(M)

is continuous.
An essential quality of the topology on Ψd(U), is that it allows continuously

pushing parts of a manifold to infinity, making them “disappear”. A simple,
illustrating example is the 0-dimensional manifold {t} ⊂ R for t ∈ R, which, as
t −→ ∞, converges to ∅ in Ψ0(R). Indeed, for every compact subset K of R, the
projection of this path is eventually constant, as the path leaves K.

The myopic topology plays an absolutely crucial rôle in the proof we present; It
is what allows our geometric manipulations in each of the three major steps:

Scanning. Our first use of the myopic topology, after constructing Cd(Rn), is to use
a scanning argument to deform Ψd(Rn) to Th(γ⊥d,n), essentially by stretching the

manifolds to become affine d-planes or the point ∞ ∈ Th(γ⊥d,n).

Delooping. We let ψd(n, k) denote the subspace of Ψd(Rn) consisting of those sub-
manifolds M which satisfy M ⊂ Rk × (−1, 1)n−k. One can think of ψd(n, k) as the
subspace of those manifolds only allowed to be non-compact in the first k directions.
We give ψd(n, k) the base-point ∅ and identify ψd(n, n) = Ψd(Rn). As mentioned,
the delooping argument will only be sketched, leaving no reason to also sketch it
here. Instead we state the result of the argument: there is a weak equivalence
ψd(n, k) ≃ Ωψd(n, k + 1) when k > 0.

GMTW. Scanning and delooping reduces our main theorem to showing that BCd(Rn)
and ψd(n, 1) are weakly equivalent. To show this, we first construct another, simpler,
topological category Dd(Rn) which models the cobordism category, in the sense
that BCd(Rn) and Dd(Rn) are weakly equivalent. This Dd(Rn) is a topological
poset, whose underlying set is the subset of R × ψd(n, 1) consisting of the pairs
(t,M) satisfying that t is a regular value of the projection x1 : M −→ R to the first
coordinate, and whose partial order is defined by

(t,M) ≤ (t,M ′) if and only if M =M ′ and t ≤ t′.
A morphism in Dd(Rn) therefore corresponds to a manifold M and an interval
[t0, t1]. Showing that BCd(Rn) ≃ BDd(Rn) involves using the topology to note
that the parts of the manifold whose first coordinate falls outside the interval are
contractible datum, again essentially pushing everything outside this interval away
to infinity.

Finally, unravelling the definition of BDd(Rn) allows us to model BDd(Rn) as
a space in which a point is a manifold M ∈ ψd(n, 1) along with regular values
t0 < t1 < . . . < tk of x1 : M −→ R each regular value having non-negative weights
a0, . . . , ak ∈ R≥0 such that a0 + · · ·+ ak = 1, up to forgetting regular values with
weight 0. With this model for BDd(Rn), we have a forgetful map

u : BDd(Rn) −→ ψd(n, 1),
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defined by forgetting the regular values and their weights. We then end the proof
by showing u is a weak equivalence.

Warning. From now on, we will take the construction of Ψd as a sheaf of topological
spaces given in appendix C for granted.



1. The cobordism category

1.1. Sketching the definition of the underlying category

Since the cobordism category is our main object of study in this thesis, we will
attempt to give a detailed while understandable description of our main model of it.
Our model is as a topological category, but to introduce it more gently, we will first
sketch it as an ordinary category, in this section, and then give it a topology, in the
next section.

We want Cd(Rn) to be a topological model for the cobordism category sketched
in the outline, namely a topological category with d-dimensional cobordisms as
morphisms, closed (d− 1)-dimensional manifolds embedded in Rn as objects, and
concatenation as composition. The category Cd(Rn) will be very similar to this
category. The topology of Cd(Rn) will come from the myopic topology on Ψ of
Galatius–Randal-Williams, which does not consider manifolds with boundary. So,
instead of usual cobordisms, as defined in the outline, we can record the length of
each cobordism and then extend the cobordisms cylindrically at either end, obtaining
a manifold without boundary (see fig. 1). Clearly, this does not add any information.

Figure 1. Extending cobordisms in the case of the classic “pair
of pants” cobordism of length t (where d = n = 2, M0 = S1, and
M1 = S1 ⊔ S1) shown in fig. 1a to the manifold shown in fig. 1b.

0 t

(a) The ordinary cobordism embed-
ded in [0, t]× R2.

0 t

(b) The extended cobordism embed-
ded in R× R2.

We can now define composition of these “extended” cobordisms as the extension of
the concatenation of the “underlying” ordinary cobordisms giving us our cobordism
category, where all manifolds involved are without boundary. Since all manifolds,
in this new description, are without boundary, giving this category a topology is
rather straight-forward using the myopic sheaf of Galatius–Randal-Williams.

1.2. As a topological category

Now, for the precise construction of Cd(Rn) with its topology. We begin, by
defining what will become the structure maps of Cd(Rn):

Definition 1.2.1. Define the function σ′ : Ψd−1(Rn−1) −→ Ψd(Rn) by:

M 7→ R×M. ⌟

Definition 1.2.2. Let M ∈ Ψd(Rn). If a ∈ R is a regular value of x1 : M −→ R,
then Ma := M ∩ x−1

1 (a) is a smooth (d − 1)-dimensional manifold. Thus we can
4
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define the partially defined function

δa : Ψd(Rn) 99K Ψd−1(Rn−1) by

M 7−→Ma,

defined for each M ∈ Ψd(Rn) for which a is a regular value of x1 : M −→ R. ⌟

Lemma 1.2.3. The functions

σ′ : Ψd−1(Rn−1) −→ Ψd(Rn) and δa : Ψd(Rn) 99K Ψd−1(Rn−1)

are continuous (where defined) for all a ∈ R.

Proof. Omitted due to lack of time. This is stated in definitions 3.1 and 3.3 of [4]
with tangential structure and should be possible to check “by hand”. □

Now, we introduce the spaces ψd(n, k), which play a crucial rôle in this thesis.

Definition 1.2.4. Let n, k ∈ N0 such that k ≤ n. Define ψd(n, k) as the subspace
of Ψd(Rn) consisting of those M satisfying M ⊂ Rk × (−1, 1)n−k, where we identify
R0 × (−1, 1)n and Rn × (−1, 1)0 with (−1, 1)n and Rn respectively. ⌟

One can think of ψd(n, k) as the d-manifolds in Rn possibly non-compact in the
first k directions.

Definition 1.2.5. We let

σk : ψd−1(n− 1, k) −→ ψd(n, k + 1)

denote the (co)restriction of σ′. We will not use σ′ again in the rest of the thesis. ⌟

We will now give a formal construction of our topological category of d-dimensional
cobordisms in Rn:

Construction 1.2.6. We let Cd(Rn) denote the topological category with space of
objects and morphisms given by

ob Cd(Rn) = ψd−1(n− 1, 0) and

mor Cd(Rn) = {0} × imσ0 ⊔N ,

where N , the space of non-identity morphisms, is defined as the subspace

N ⊂ (0,∞)× ψd(n, 1)

consisting of those (t,W ) for which there exists ϵ > 0 and M ′,M ′′ ∈ ψd−1(n− 1, 0)
such that

W |(−∞,ϵ)×Rn−1 = (σ0(M
′))|(−∞,ϵ)×Rn−1 and

W |(t−ϵ,∞)×Rn−1 = (σ0(M
′′))|(t−ϵ,∞)×Rn−1 ,

so, in particular, 0 and t are regular values of x1 : W −→ R.
The structure maps of Cd(Rn) are defined as follows:

s0 : ψd−1(n− 1, 0)
σ0−→ imσ0 ∼= {0} × imσ0 ↪→ mor Cd(Rn),

d1 : {0} × imσ0 ⊔N −→ ψd−1(n− 1, 0),

by d1|{0}×imσ0
being the left-inverse of σ0 and

d1(t,W ) = δ0(W ), for all (W, t) ∈ N ,

and similarly, d0 by d0|{0}×imσ0
being the left-inverse of σ0 and

d0(t,W ) = δt(W ), for all (W, t) ∈ N .

We define the composition by

(t,W ) ◦ (t′,W ′) = (t+ t′,W ′′),
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where W ′′ is the unique element of ψd(n, 1) such that

W ′′|(−∞,t]×Rn−1 =W |(−∞,t]×Rn−1 and

W ′′|[t,∞)×Rn−1 = (W ′ + te1)|(−∞,t]×Rn−1 . ⌟

Again, one should check that the composition is continuous, which we do not
have time for.



2. Scanning

2.1. The homotopy type of the moduli space of d-manifolds

In this section we define the space Th(γ⊥d,n) and construct a weak equivalence

Ψd(Rn) ≃ Th(γnd,n) by a scanning argument. There is standard theoretical machinery,

which computes homotopical data about Th(γ⊥d,n) and we will therefore consider

this as “determining” the homotopy type of Ψd(Rn).
We begin with the definition of Th(γ⊥d,n):

Definition 2.1.1. We let Grd(Rn) denote the d-dimensional Grassmannian of Rn

and let γ⊥d,n denote the orthogonal complement of the tautological bundle over

Grd(Rn) i.e.: the (n − d)-dimensional vector bundle with base space B(γ⊥d,n) =

Grd(Rn), total space E(γ⊥d,n) = {(v, V ) ∈ Rn ×Grd(Rn) | v ∈ V ⊥}, and projection
map

π(γ⊥d,n) : E(γ⊥d,n) −→ B(γ⊥d,n) defined by

(v, V ) 7−→ V ,

for all (v, V ) ∈ E(γ⊥d,n). Finally, we define Th(γ
⊥
d,n) as the one-point compactification

of E(γ⊥d,n).
1 ⌟

We will follow the proof given in [2, §6] which works by constructing a map
q : Th(γ⊥d,n) −→ Ψd(Rn) and showing it is a weak equivalence.

Construction 2.1.2. Since Th(γ⊥d,n) is the one-point compactification of E(γ⊥d,n),

we will write Th(γd,n) = E(γ⊥d,n) ∪ {∞}. Now, define q : Th(γ⊥d,n) −→ Ψd(Rn) by
letting

(v, V ) 7→ V + v

for all (v, V ) ∈ E(γ⊥d,n) and q(∞) = ∅. We will use that q restricts to an embedding

of E(γ⊥d,n), which is stated on [2, p. 765]. That q is continuous at ∞ is a routine
check. ⌟

To show q is a weak equivalence, we use the following homotopical lemma:

Lemma 2.1.3. Let X be a topological space. If U0, U1 ⊂ X form an open cover of
X, then the pushout

U0 ∩ U1 U0

U1 X

is a homotopy pushout.

Proof. This is lemma 32.1.5 of the lecture notes of Alexander Kupers on diffeomor-
phism groups of manifolds and a proof is given there. □

1The notation Th(γ⊥d,n) is due to Th(γ⊥d,n) being the Thom space of γ⊥d,n, but in the interest of

brevity we will not elaborate on this further, though we, of course, encourage the reader to explore
this, if they have not already.

7
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We would have wanted to cover Ψd(Rn) by the subspaces U0, U1 ⊂ Ψd(Rn) where
U0 is the subspace of manifolds not containing the origin and U1 is the subspace
of those manifolds with a unique point closest to the origin. Unfortunately, in this
case U1 is not open. Instead, we tweak the definition of U1 slightly:

Construction 2.1.4. We define U0 ⊂ Ψd(Rn) as the set of those manifolds not
containing the origin and we define U1 as the subspace consisting of those M ∈
Ψd(Rn) such that the map

M −→ R defined by

x 7−→ ∥x∥2 for all x ∈M
has a unique minimal value, which is the value of a non-degenerate critical point. ⌟

We will need the following technical lemma, whose proof is probably best skipped
by the reader who has skipped appendix C:

Lemma 2.1.5. The subspaces U0 and U1 of construction 2.1.4 form an open cover
of Ψd(Rn).

Partial proof. Due to lack of time, we will not show, that U1 is open. To show
U0 ∪ U1 = Ψd(Rn) it suffices to show, that if M ∈ Ψd(Rn) contains 0, then 0 is

a non-degenerate critical point of ∥−∥2 : M −→ R. This follows from the inverse
function theorem.

For each compact K ⊂ Rn, let UK denote the subset of Ψd(Rn) consisting of
those manifolds that are disjoint from K and note that U0 = U{0}. We will show the
more general result that UK is open for all compact K ⊂ Rn, because we will use it
in a later proof: Let K ⊂ Rn be compact. Pick a manifold M disjoint from K and
a neighbourhood A of M in Ψcs(Rn) sufficiently small for every point of A to be
disjoint from K. Now, since πK : Ψcs(Rn) −→ (Ψs|Rn)K is open (lemma C.2.3) we
get that πK(A) = {πK(∅)} is open and so UK = π−1

K (πK(∅)) is open in ΨK
d (Rn)

and therefore also in Ψd(Rn).
For specific choices of M and A: use that K is compact and therefore bounded

to choose a k ∈ R>0 such that K ⊂ Bk, where Bk denotes the ball centered at the
origin with radius k. Now choose

M = Sd + (k + 1) · e1 and A = cM ({s ∈ Γc(νM ) | |s(x)| < 1}). □

The following theorem is [2, lemma 6.1].

Theorem 2.1.6. The (co)restrictions

q−1(U0) −→ U0, q−1(U1) −→ U1, and q−1(U0 ∩ U1) −→ U0 ∩ U1

of q are weak equivalences. Consequently q : Th(γ⊥d,n) −→ Ψd(Rn) is a weak equiva-
lence.

Partial proof. This proof uses two homotopies H and S. Checking that these are
continuous is a bit cumbersome and involves using the myopic topology. Therefore,
we postpone showing H and S are continuous to the very end of the proof and,
due to lack of time, we will not show that S is continuous when t = 1 though
showing this only involves the defining property of smooth manifolds and the myopic
topology.

First, we show why the last statement follows from the first: By lemma 2.1.3 and
lemma 2.1.5 we have that

q−1(U0 ∩ U1) q−1(U0)

q−1(U1) Th(γ⊥d,n)

and

U0 ∩ U1 U0

U1 Ψd(Rn)
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are homotopy pushouts, so, by homotopy invariance of the homotopy colimit, q
must be weak equivalence.

We now show the mentioned (co)restrictions of q are weak equivalences: For a
point p ∈ Rn and a real number t ∈ R, let µt,p : Rn −→ Rn denote the map defined
by scalar multiplication by t at p i.e.:

µt,p(x) = t · (x− p) + p

for all x ∈ Rn. Note that µt,p is a diffeomorphism when t ̸= 0. We will let µt denote
µt,0 for all t ∈ R.

First, we show that U0 and q
−1(U0) are both contractible, implying the (co)restriction

q−1(U0) −→ U0 of q is a weak equivalence. We do this by giving contractions of U0

to {∅} and of q−1(U0) to {∞} by “pushing infinitely away”: The homotopy

H : [0, 1]× U0 −→ U0 defined by

(t,M) 7−→

{
µ−1
1−t(M) t ̸= 1

∅ t = 1

is a contraction of U0 to {∅}.
Similarly, using that q−1(U0) = {(v, V ) ∈ E(γ⊥d,n) | v ̸= 0} ∪ {∞}, we get that

the map

[0, 1]× q−1(U0) −→ q−1(U0), given by

∞ 7−→ ∞, and

(v, V ) 7−→

{
( 1
1−t · v, V ) t ̸= 1

∞ t = 1,
for all (v, V ) ∈ E(γ⊥d,n)

is a contraction of q−1(U0) to {∞}.
Secondly, we define a deformation retraction of the (co)restriction q−1(U1) −→ U1

of q: For each M ∈ U1, let pM ∈ Rn denote the unique point minimizing ∥x∥2 on
M . Define

S : [0, 1]× U1 −→ U1 by

(t,M) 7−→

{
(µ1−t,pM

)−1(M) t ̸= 1

TpM
M + pM t = 1,

for all (t,M) ∈ [0, 1]× U1.
Thirdly, we note that the (co)restriction [0, 1]× (U0 ∩ U1) −→ U0 ∩ U1 of S is a

deformation retraction of the (co)restriction q−1(U0 ∩ U1) −→ U0 ∩ U1 of q.

Finally, we show that H and S are continuous beginning with H: Note that
the function µ : [0, 1) −→ Emb(Rn,Rn) given by t 7→ µ1−t is continuous, so the
restriction of H to [0, 1)× U0 can be factored as the composition of the continuous
maps

[0, 1)× U0
µ×id−−−→ Emb(Rn,Rn)× U0

p−→ U0,

where p is the map from theorem C.2.8, so it is continuous. Checking, that H is
continuous when t = 1 is equivalent to checking, that the composition

(2.1) [0, 1]× U0
H−→ U0 ↪→ Ψd(Rn)

ids

−−→ ΨK
d (Rn)

πK−−→ (Ψs|Rn)K

is continuous near t = 1 for all compact subsets K ⊂ Rn. Let K ⊂ Rn be a compact
subset and let M ∈ U0. Use that K is compact and therefore bounded, to pick
a k ∈ R>0 such that K ⊂ Bk, where Bk denotes the ball centered at the origin
with radius k. Let ϵ = dist(M, 0) (note that ϵ > 0 since M ∈ U0) and let A be the
neighbourhood ([0, 1]∩ (1− ϵ/2k, 1])×UBϵ/2

of (1,M) in [0, 1]×U0, where UBϵ/2
is

the neighbourhood of M in U0 using the notation of the proof of lemma 2.1.5. It
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now suffices to check continuity on the neighbourhood A and here (2.1) is constantly
πK(∅) (because the minimal distance to the origin of any point in H(A) is greater
than k), finishing the proof that H is continuous.

Similarly for S: Note that the function α : U1 −→ Rn given by M 7→ pM is
continuous and that the function β : Rn −→ Diff(Rn) given by x 7→ trx, where
trx : Rn −→ Rn denotes translation by x ∈ Rn, is continuous. Once we note that
µt,x = trx ◦µt ◦ tr−1

x , it is clear that the restriction of S to [0, 1)×U1 can be factored
as the composition

[0, 1)× U1
(β◦α◦pr2,µ◦pr1,β◦α◦pr2,pr2)−−−−−−−−−−−−−−−−−−−→ Diff(Rn)×Diff(Rn)×Diff(Rn)× U1

id× id×inv×id−−−−−−−−−−→ Diff(Rn)×Diff(Rn)×Diff(Rn)× U1

c×id−−−→ Diff(Rn)× U1

↪→ Emb(Rn,Rn)× U1

p−→ U1 (from theorem C.2.8)

of continuous maps, where inv : Diff(Rn) −→ Diff(Rn) is the map sending f to f−1

for all f ∈ Diff(Rn) and c : Diff(Rn) × Diff(Rn) × Diff(Rn) −→ Diff(Rn) is given
by composition of functions i.e. (x, y, z) 7→ x ◦ y ◦ z (that inv and c are continuous
are general facts of the Whitney C∞-topology). Therefore, S is continuous on
[0, 1)× U1.

As mentioned, we omit the proof that S is continuous when t = 1. We hope it is,
at least intuitively, obvious to the reader. □



3. GMTW

3.1. The homotopy type of the cobordism category

In this section we will construct a weak equivalence BCd(Rn) ≃ ψd(n, 1), where
we take BCd(Rn) to mean

∥∥N int
• Cd(Rn)

∥∥, as in definition A.2.2. We follow [4, §3.2]
closely.

Remark. If X is a topological space and ≤ is a partial order on X, then the poset
category of (X,≤) enhances (naturally) to a topological category, which we call a
topological poset. In this case, we will abuse notation and also denote this topological
category by X.

We begin by giving simpler models of the cobordism category as topological
posets:

Definition 3.1.1. Let Dd(Rn) ⊂ R× ψd(n, 1) be the subspace consisting of those
(t,M) ∈ R× ψd(n, 1) for which t is a regular value of x1 : M −→ R. Give Dd(Rn)
the partial order defined by

(t,M) ≤ (t′,M ′) if and only if M =M ′ and t ≤ t′.
Define D⊥

d (Rn) ⊂ Dd(Rn) as the subspace consisting of those (t,M) ∈ Dd(Rn) for

which M is cylindrical in x−1
1 (t− ϵ, t+ ϵ) for some ϵ > 0 and equip D⊥

d (Rn) with
the restriction of the partial order on Dd(Rn). ⌟

We will now show that Dd(Rn) and D⊥
d (Rn) are models for our cobordism

category, in the sense that their classifying spaces are homotopy equivalent to that
of Cd(Rn). To do this, we construct a continuous functor c : D⊥

d (Rn) −→ Cd(Rn)
and show that c and the inclusion D⊥

d (Rn) ↪→ Dd(Rn) are level-wise homotopy
equivalences of categories.

Construction 3.1.2. Let c : D⊥
d (Rn) −→ Cd(Rn) be the continuous functor such

that: On objects, c sends (t,M) to δt(M) = x−1
1 (t) and, on non-identity mor-

phisms, c sends (t0 < t1,M) to the extension of the “translated ordinary cobordism”
x−1
1 ([t0, t1]), more precisely: c sends (t0 < t1,M) to the morphism from δt0(M) to
δt1(M) given by the extension of (M − t0e1) ∩ ([0, t1 − t0]× Rn−1). ⌟

Lemma 3.1.3. The zig-zag

Cd(Rn)
c←− D⊥

d (Rn)
ι
↪−→ Dd(Rn),

where c is the map from construction 3.1.2 and ι is the inclusion, is a zig-zag of
level-wise homotopy equivalences of categories. In particular BCd(Rn) ≃ BDd(Rn).

Proof. That ι is a level-wise homotopy equivalence follows from [4, Lemma 3.4],
which provides a homotopy essentially tweaking each manifold to be cylindrical near
the specified regular values.

For a morphism (t0 < t1,M) in D⊥
d (Rn), c forgets the “ends” x−1

1 ((−∞, t0]) and
x−1
1 ([t1,∞)) of M , and so to show that c is a level-wise homotopy equivalence of

categories, we will have to show, that these form contractible data. To do this, we
will use a family of maps ϕs(a, b) to continuously push either end away to infinity
leaving us with our morphism of Cd(Rn).

We introduce the functions ϕs(a, b) (see fig. 2):
11
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Figure 2. Sketch of the graph of ϕs(a, b) as [4, Figure 1].

a b

a

b
ϕs(a, b)

(a) case s = 0.

a ba− s b+ s

a

b
ϕs(a, b)

(b) case 0 < s < ∞.

a b

a

b
ϕs(a, b)

(c) case s = ∞.

For all a, b ∈ R with a < b define ϕs(a, b) : R −→ R by

x
ϕs(a,b)7−−−−→



x− (b− s) x ≥ b+ s

b b ≤ x ≤ b+ s

x a ≤ x ≤ b
a a− s ≤ x ≤ a
x+ (a− s) a ≤ a− s

for every s ∈ R≥0 and let ϕ∞(a, b) denote the point-wise limit of ψs(a, b) as s→∞.
Note that ϕ0(a, b) = idR whenever defined and that for a morphism (t0 < t1,M) in
D⊥

d (Rn), we have that

(ϕs(a, b)× idRn−1)−1(M)

is an element of ψd(n, 1) which agrees with M on [t0, t1]× Rn−1, is cylincrical on
[t0−s, t0]×Rn−1 and [t1, t1+s]×Rn−1, and is a translated copy of x−1

1 ((−∞, t0]) and
x−1
1 ([t1,∞)) on (−∞, t0− s]×Rn−1 and [t1 + s,∞)×Rn−1 respectively. Therefore,

we can (re)write

c(t0 < t1,M) = (t1 − t0, (ϕ∞(t0, t1)× idRn−1)−1(M)− t0 · e1).

We will now show, that c is a level-wise homotopy equivalence of categories. Let
k ∈ N0. We show, that the “inclusion” N int

k Cd(Rn) ↪→ N int
k D⊥

d (Rn) is a homotopy
inverse of N int

k c. On the image of this inclusion, N int
k c restricts to the identity,

so we only need to provide a homotopy from the identity on N int
k D⊥

d (Rn) to c
post-composed with the inclusion:

Define the homotopy h : [0, 1]×N int
k D⊥

d (Rn) −→ N int
k D⊥

d (Rn) by letting h(s,−)
send the chain (t0 < . . . < tk,M) in N int

k D⊥
d (Rn) to the chain

(t0 − s · t0 < . . . < tk − s · t0, (ϕ s
1−s

(t0, tk)× idRn−1)−1(M)− s · t0 · e1),

for all s ∈ [0, 1]. This homotopy suffices, finishing the proof. Checking continuity of
h is similar to checking continuity of the homotopies in the proof of theorem 2.1.6
and is omitted due to lack of time. □

Construction 3.1.4. A chain of m composeable morphisms in Dd(Rn) is of the
form (t0 ≤ . . . ≤ tm,M) where M ∈ ψd(n, 1) and where ti is a regular value of
x1 : M −→ R for each i = 0, . . . ,m. Writing out the canonical models for

BDd(Rn) =
∥∥N int

• Dd(Rn)
∥∥ =

∫ [m]∈∆+

N int
m Dd(Rn)×∆m

Top,

we can therefore find the following model for BDd(Rn):
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We give each point of BDd(Rn) coordinates which we will write as

[a0t̄0 + . . .+ ant̄m;M ],

where M ∈ ψd(n, 1) and ti is a regular value of x1 : M −→ R for each i = 0, . . . ,m,
and where (a0, . . . , am) is a point of the standard m-simplex in Rm+1 (thought of
as having vertices labeled by t̄0, . . . , t̄m).2 Furthermore, we call ai the weight of ti
for each i = 0, . . . ,m, and impose that removing a regular value with weight 0 gives
coordinates of the same point, so e.g.:

[0t̄0 + a1t̄1 + . . .+ amt̄m;M ] = [a1t̄1 + . . .+ amt̄m;M ].

From this description, the topology on BDd(Rn) should be clear.
With these coordinates, we now define the forgetful map

u : BDd(Rn) −→ ψd(n, 1) defined on all points by

[a0t̄0 + . . .+ amt̄m;M ] 7−→M. ⌟

We now want to show that u is a weak equivalence. To do this, we will use the
following homotopical lemma.

Lemma 3.1.5. Let e : X −→ Y be a map of topological spaces. The map e is a
weak equivalence if and only if each commutative diagram of the form

∂Dn X

Dn Y

f̂

e

f

admits a lift g : Dn −→ X making the lower right triangle and the upper left triangle
of

∂Dn X

Dn Y

f̂

e

f

g

strictly commute and commute up to homotopy respectively (for all n ∈ N0).

Proof. We omit the proof, but note that it follows from [7, §9.6 Lemma on p. 68]. □

Finally, we show that u is a weak equivalence:

Theorem 3.1.6. The map u : BDd(Rn) −→ ψd(n, 1) from construction 3.1.4 is a
weak equivalence.

Proof. We will use lemma 3.1.5. Let f and f̂ be continuous maps such, that

∂Dm BDd(Rn)

Dm ψd(n, 1)

f̂

u

f

commutes form ∈ N0. We will now construct a continuous map g : Dm −→ BDd(Rn)
as in lemma 3.1.5:

For every t ∈ R let Ut denote the set of points x ∈ Dm such that t is a regular
value of x1 : f(x) −→ R. Note that Ut is open for every t ∈ R. By Sard’s theorem,
the collection {Ut}t∈R is an open cover of Dm. Since Dm is compact there exists

2The notation t̄i is only meant to distinguish the label of the vertex in the simplex from the
real number ti. A way to make a0 t̄0 + . . .+ am t̄m formal is as an element of the free R-module on

the set of regular values of x1 : M −→ R, incidentally satisfying a0 + · · ·+ am = 1.
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finitely many t0 < . . . < tk ∈ R such that {Uti}i∈[k] is an open cover of Dm. Pick a
partition of unity a0, . . . , ak : D

m −→ [0, 1] subordinate to {Uti}i∈[k]. Now define
g : Dm −→ BDd(Rn) by

x
g7−→ [a0(x)t̄0 + . . .+ ak(x)t̄k; f(x)]

for all x ∈ Dm, where we do not add the ai(x)t̄i if ai(x) = 0 to make it well-defined.

Now, clearly u ◦ g = f . Since u ◦ g = f we have u ◦ f̂ = u ◦ g|∂Dm . The fibre
of u over a point M ∈ ψd(n, 1) is a simplex whose vertices correspond to regular
values of x1 : M −→ R. So since simplices are convex we can pick the straight-line

homotopy on the fibres of u as a homotopy between f̂ and g|Dm . □



4. Delooping

4.1. Sketching the delooping argument

As mentioned in the outline and introduction, this section has, unfortunately, due
to lack of time, only managed to become a sketch of the delooping argument needed
to finish the proof. To finish the proof, we need that ψd(n, 1) ≃ Ωn−1Ψd(Rn), and,
to prove this, it suffices that ψd(n, k) ≃ Ωψd(n, k + 1), when k > 0.

We begin with a quick argument that ψd(n, 1), abstractly, is an (n− 1)-fold loop
space, i.e. it does not tell us which space ψd(n, 1) is an (n− 1)-fold loop space of,
and so does not quite suffice for the proof of GMTW:

It is fairly elementary to show, using theorem C.2.8, that ψd(n, 1) has the structure
of an algebra over the little (n− 1)-cubes operad Dn−1, making it an En−1-algebra,
as defined in definition A.5.4. As we will note later, [4] shows that ψd(n, 1) is
group-like with respect to this structure and so it follows from the May recognition
principle, [11, Theorem 1.1.6], that ψd(n, 1) is an (n− 1)-fold loop-space.

Before we give an outline of how [4] proves that ψd(n, k) ≃ Ωψd(n, k + 1) when
k > 0, we will mention that Oscar Randal-Williams gives another proof, in higher
generality, of this in [9, §5–6]. The author of this thesis does not claim to understand
this proof, but to the best of his knowledge the following should be a true statement
about it: Randal-Williams uses a more general definition of Ψd,n, which he shows
is microflexible and then uses Gromov’s h-principle to conclude a statement from
which it follows that ψd(n, k) ≃ Ωψd(n, k + 1) when k > 0.

Let us now give the same appetizer as [4], before we outline how they actually
prove it, as the prove they give is simpler than that of the appetizer:

Appetizer. The map
R× ψd(n, k) −→ ψd(n, k + 1)

(t,M) 7−→M + t · ek+1

extends uniquely to a map S1 ∧ ψd(n, k) −→ ψd(n, k + 1) and the adjunct

ψd(n, k) −→ Ωψd(n, k + 1)

of this map is a homotopy equivalence.

Outline of delooping argument. Now, we will outline how [4] proves

ψd(n, k) ≃ Ωψd(n, k + 1) when k > 0.

The key lemma, [4] makes use of, is a well-know result of Segal. To state it, we
use the following definition:

Definition 4.1.1. A strong Segal space is a simplicial space for which the Segal
maps induce homotopy equivalences. Let X• be a strong Segal space, then the Segal
maps induce a monoid structure on π0X1. If the induced monoid structure on π0X1

forms a group, then we say X• is group-like. ⌟

As promised, the aforementioned result of Segal:

Lemma 4.1.2. Let X• be a strong Segal space. Then the natural map

X1 −→ Ω∥X•∥
is a homotopy equivalence if and only if X• is group-like.

15
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To use this result, they endow π0ψd(n, k) with a monoidal structure when k < n
by “stacking” the manifolds on top of each other in the (k + 1)st direction and
squeezing them to fit in the (k + 1)st direction. Formally: we define the sum

⊕k : ψd(n, k)× ψd(n, k) −→ ψd(n, k), by

M1 ⊕k M2 := (µ−1
k+1,2(M1)− 1/2 · ek+1) ∪ (µ−1

k+1,2(M1) + 1/2 · ek+1)

for all M1,M2 ∈ ψd(n, k), where µk+1,2 : Rn −→ Rn is the smooth embedding which
scales the (k + 1)st coordinate by 2. The monoid structure on π0ψd(n, k) is then
defined by using ⊕k on representatives.3

To apply lemma 4.1.2, [4] constructs a strong Segal space N•ψd(n, k), which plays
the role of the nerve of the monoid, in the sense that there is a natural homotopy
equivalence

ψd(n, k) ≃ N1ψd(n, k) (this is [4, Prop. 3.19])

and the monoid structure induced on π0ψd(n, k) agrees with the one we defined
previously, while being easier to work with for our purposes. The construction of
N•ψd(n, k) is not difficult, but it is long and a bit notationally heavy, and their
proof that N•ψd(n, k) is a strong Segal space ([4, Lemma 3.18]) is quite similar to
the proof of lemma 3.1.3.

Proposition 3.6 of [4] shows that σk of definition 1.2.5 induces a bijection

π0σk : π0ψd−1(n− 1, k) −→ π0ψd(n, k + 1),

and, since σk(M0⊕kM1) = σk(M0)⊕k+1 σk(M1), this bijection respects the monoid
structure. Therefore, we get monoid isomorphisms

π0ψd(n, k) ∼= π0ψd−k+1(n− k + 1, 1),

so to show that N•ψd(n, k) is group-like, it suffices to show that π0ψd(n, 1) is a group.
That π0ψd(n, 1) is a group, follows from Corollary 3.11 of [4], which states that it is
isomorphic to the bordism monoid Ωd,n of cobordism classes of (d− 1)-dimensional
manifolds in Rn−1, which is well-known to be a group.

By lemma 4.1.2, the problem is now reduced to providing a weak equivalence

∥N•ψd(n, k)∥ −→ ψ∅
d (n, k + 1),

where ψ∅
d (n, k + 1) denotes the path component of ∅ of ψd(n, k + 1), because then,

taking loops, we get a weak equivalence

ψd(n, k) ≃ Ω∥N•ψd(n, k)∥ −→ Ωψ∅
d (n, k + 1) = Ωψd(n, k + 1).

This is done by a combination of the propositions 3.20 and 3.31 of [4]. The proofs
of both of these, the former being quite short and the latter quite long, use similar
methods to the ones we have used throughout this thesis, especially in section 3.
This concludes our sketch of the argument of the following theorem:

Theorem 4.1.3. There is a weak equivalence ψd(n, k) ≃ Ωψd(n, k + 1) when k > 0.

4.2. Concluding GMTW

Our previous work amounts to a proof of our main theorem:

Theorem 4.2.1. There is a weak equivalence BCd(Rn) ≃ Ωn−1 Th(γ⊥d,n).

Proof. We combine the weak/homotopy equivalences of lemma 3.1.3, theorem 3.1.6,
theorem 4.1.3, and theorem 2.1.6 to give the weak equivalence

BCd(Rn) ≃ BDd(Rn) ≃ ψd(n, 1) ≃ Ωn−1Ψd(Rn) ≃ Ωn−1 Th(γ⊥d,n). □

3So, we have n− k different monoidal structures on π0ψ(n, k) and the En−1-algebra structure
on ψd(n, 1) is the one inducing each of these, when k = 1.
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When taking for granted, that the weak equivalence given in the proof of theo-
rem 4.2.1 is natural in n, we get the main theorem of [3] without tangential structures
as a corollary:

Corollary (GMTW). There is a weak equivalence BCd ≃ Ω∞−1MT (d).

Proof. Taking the colimit as n −→∞, we get

BCd = B colim
n→∞

Cd(Rn) ∼= colim
n→∞

BCd(Rn) ≃ colim
n→∞

Ωn−1 Th(γ⊥d,n) =: Ω
∞−1MT (d).

□



Appendix A. Categories & Operads

This appendix’ raison d’être is simply to contain definitions used in other sections
and appendices. A reader who is actually interested in learning these definitions
should figure out, which diagrams are required to commute in each case themselves
and only use this as a way to check their solutions. We consider the theory of this
appendix well-known.

A.1. Internal categories

Definition A.1.1. Let C be a category. A category C internal to C consists of
objects C0, C1 ∈ C and morphisms

C0 C1 C1 ×C0
C1,s0

d1

d0

c

where C1 ×C0
C1 is the pullback

C1 ×C0
C1 C1

C1 C0,

p2

p1 d1

d0

such that the diagrams

C0 C1

C0,

s0

idC0

d1 d0

C1 ×C0
C1 C1

C1 C0,

c

p1 d1

d1

C1 ×C0
C1 C1

C1 C0,

c

p2 d0

d0

(C1 ×C0
C1)×C0

C1 C1 ×C0
(C1 ×C0

C1)

C1 ×C0
C1 C1 C1 ×C0

C1,

∼

c×C0
idC1

idC1
×C0

c

c c

and

C0 ×C0
C1 C1 ×C0

C1 C1 ×C0
C0

A

s0×C0
idC1

p2

c

idC1
×C0

s0

p1

commute.
The objects C0 and C1 are called the (objects of) objects and morphisms of C

respectively, while the morhisms s0, d0, d1, and c are called the identity-assigning,
target, source, and composition morphisms of C respectively. When convenient, we
will denote C0 and C1 by obC and morC respectively. ⌟

Remark. Note that the pullbacks involved in particular have to exist.

Definition A.1.2. Let C and D be categories internal to a category C . An internal
functor f : C −→ D is a pair of morphisms f0 : C0 −→ D0 and f1 : C1 −→ D1

18
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making the squares containing consecutive columns and horizontal morphisms with
the same label of

C0 C1 C1 ×C0
C1

D0 D1 D1 ×D0 D1

s0

f0

d1

d0
f1

c

f1×D0
f1

s0

d1

d2

c

commute. ⌟

Definition A.1.3. Let C be a category. The categories internal to C and internal
functors between them form a category, which we will denote Cat(C ). We call an
object of Cat(Top) a topological category. ⌟

Remark. We identify Cat with Cat(Set).

Remark. If C is a category internal to a category C and F : C −→ D is a functor
that preserves pullbacks (e.g. a right adjoint), then F sends C to a category internal
to D . In general such a functor F induces a functor Cat(C ) −→ Cat(D).

Definition A.1.4. Let C be a category internal to a category C . The internal
nerve N int

• (C) of C is the simplicial object of C (whose nth object we denote N int
n C)

defined by

N int
0 C = C0, N int

1 C = C1, and N int
n C = C

×C0
n

1

for all n ≥ 2, with the evident face- and degeneracy-maps coming from the structure
morphisms of C. The internal nerve forms a functor Cat(C ) −→ sC ⌟

A.2. Topological categories and their classifying spaces

Definition A.2.1. Let X• ∈ sTop. We define the realization and fat realization of
X• as the coends

|X•| :=
∫ [n]∈∆

Xn ×∆n
Top and ∥X•∥ :=

∫ [n]∈∆+

Xn ×∆n
Top

respectively, where ∆•
Top denotes the usual cosimplicial object in Top and ∆+

the wide subcategory of ∆ spanned by injective functions. For X• ∈ sSet we
let |X•| :=

∣∣Xδ
•
∣∣ and ∥X•∥ :=

∥∥Xδ
•
∥∥, where (−)δ : sSet −→ sTop is the functor

induced by the functor Set −→ Top giving the discrete topology (the left adjoint
of the forgetful functor). ⌟

Definition A.2.2. For a topological category C, we define BC by

BC :=
∥∥N int

• C
∥∥

and call it the (fat) classifying space of C. ⌟

Definition A.2.3. If a continuous functor F : C −→ D in Cat(Top) satisfies that

N int
k F : N int

k C −→ N int
k D

is a homotopy equivalence for all k ∈ N0, we call F a level-wise homotopy equivalence
(of categories). ⌟

Lemma A.2.4. Let f• : A• −→ B• be a map of simplicial spaces. If fn : An −→ Bn

is a homotopy equivalence for all n ∈ N0, then the induced map

∥f•∥ : ∥A•∥ −→ ∥B•∥
is a homotopy equivalence.

Proof. This is [10, Proposition A.1 (ii)]. □

Corollary A.2.5. If F : C −→ D is a level-wise homotopy equivalence of categories,
then the induced map BF : BC −→ BD is a homotopy equivalence.
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A.3. Symmetric monoidal categories

Definition A.3.1. A monoidal category (C ,⊗,1) consists of the following data: a
category C , an object 1 ∈ C , and a functor⊗ : C×C −→ C along with isomorphisms

a : (x⊗ y)⊗ z −→ x⊗ (y ⊗ z), λ : 1⊗ x −→ x, and ρ : x⊗ 1 −→ x

natural in x, y, z ∈ C , making certain diagrams found in [5, chapter VII] commute.
If, furthermore, a, λ and ρ are the identity morphisms, we say that the monoidal
category is strict. ⌟

Definition A.3.2. Let C be a monoidal category. A braiding on C is an isomorphism
b : x⊗y −→ y⊗x, natural in x, y ∈ C , making certain diagrams found in [5, pp. 252–
253] commute. ⌟

Definition A.3.3. A symmetric monoidal category (C ,⊗,1) is a monoidal category
(C ,⊗,1) with a braiding b, such that the composition

x⊗ y bx,y−−→ y ⊗ x by,x−−→ x⊗ y

is the identity for all x, y ∈ C . ⌟

Definition A.3.4. A cartesian (monoidal) category is a symmetric monoidal cate-
gory whose monoidal structure is given by the category theoretic product in the
category. ⌟

Definition A.3.5. Let C be a monoidal category. A monoid (object) (M,µ, e) of
C is an object M ∈ C together with morphisms

µ : M ⊗M −→M, and e : 1 −→M

such that the diagrams

(associativity)

(M ⊗M)⊗M M ⊗ (M ⊗M)

M ⊗M M M ⊗M

a

µ⊗idM idM ⊗µ

µ µ

and

(left/right unitality)

1⊗M M ⊗M M ⊗ 1

M

e⊗idM

λ
µ

idM ⊗e

ρ

commute. ⌟

Remark. In case C is cartesian, we can define the notion of a group object of C .

Definition A.3.6. Let (C ,⊗,1) be a symmetric monoidal category. An internal
hom-functor to C is a functor Hom: C op × C −→ C satisfying that for each x ∈ C ,
the functors

(−)⊗ x : C −→ C and Hom(x,−) : C −→ C

form an adjoint pair (−)⊗ x ⊣ Hom(x,−). ⌟

A.4. Actions

In this section we define actions of a monoid. The reader not familiar with
monoids, can think of the special case of groups instead.

We first give an “external” definition of an action of a group.
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Definition A.4.1 (External monoid action). Let M be a monoid, C a category,
and c ∈ C . A left (resp. right) action of M on c is a covariant (resp. contravariant)
functor

α : BM −→ C (resp. α : BMop −→ C )

sending the object of BM to c. We denote α(m) by m.(−) (resp. (−).m) for all
m ∈M . ⌟

Remark. In the literature, there is a notion of an action being effective. With our
external definition, this is simply the property, that the action is faithful.

Definition A.4.2 (Internal monoid action). Let C be a category, M a monoid
object in C , and X ∈ C . A left action of M on X is a morphism

α : M ⊗X −→ X

such that the diagram

(M ⊗M)⊗X M ⊗ (M ⊗X) M ⊗X 1⊗X

M ⊗X X

a

µ⊗idX

idM ⊗α

α

e⊗idX

α

λ

commutes. We let the reader define the evident notion of a right action. ⌟

Remark. Note that a group object in a cartesian category contains a monoid object.
We define the action of a group object, to be an action of the monoid it contains (of
the same “dexterity/handedness”).

A.5. Operads

These were first defined in [8] though only in Top, but the definition is an obvious
generalization. Our definitions in this section come from [11, §1.1.1–1.1.3],

Notation. We let Σn denote the symmetric group on the set of n elements.

Definition A.5.1. Let (C ,⊗,1) be a symmetric monoidal category. An operad O
in C is a collection of objects O(n) indexed by n ∈ N0 equipped with (external)
right actions of Σn on O(n) and a morphism η : 1 −→ O(1) along with product
morphisms

γ : O(k)⊗O(n1)⊗ · · · ⊗ O(nk) −→ O(n1 + · · ·+ nk)

which are associative, unital and Σ-equivariant in the sense that the diagrams
(associativity)

O(k)⊗
k⊗

i=1

O(ni)⊗
k⊗

i=1

ni⊗
j=1

O(mi,j) O
(∑k

i=1 ni
)
⊗

k⊗
i=1

ni⊗
j=1

O(mi,j)

O(k)⊗
k⊗

i=1

(
O(ni)⊗

ni⊗
j=1

O(mi,j)

)

O(k)⊗
k⊗

i=1

O
(∑ni

j=1mi,j

)
O
(∑k

i=1

∑ni

j=1mi,j

)
,

γ⊗id

shuffle

γ

id⊗
⊗k

i=1 γ

γ
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(Σ-equivariance)

O(n)⊗O(n1)⊗ · · · ⊗ O(nk) O(n)⊗O(nσ(1))⊗ · · · ⊗ O(nσ(k))

O(n1 + n2 + · · ·+ nk) O(n1 + n2 + · · ·+ nk),

.σ⊗σ−1

γ γ

.σ(n1,n2,...,nk)

O(n)⊗O(n1)⊗ · · · ⊗ O(nk) O(n)⊗O(n1)⊗ · · · ⊗ O(nk)

O(n1 + n2 + · · ·+ nk) O(n1 + n2 + · · ·+ nk),

id⊗.τ1⊗···⊗.τk

γ γ

.(τ1⊕···⊕τk)

(unitality)

1⊗O(n) O(n)

O(1)⊗O(n),

λ

η⊗id γ
and

O(n)⊗ 1⊗n O(n)

O(n)⊗O(1)⊗n

ρn

id⊗η⊗n
γ

commute. ⌟

Definition A.5.2. Let (C ,⊗,1) be a symmetric monoidal category with internal
hom-functor. The endomorphism operad Ex of an object x ∈ C is the operad with
Ex(k) = Hom(x⊗k, x) and composition γ given by the composition in C . If O is an
operad in C , then an algebra over O is an object x ∈ C and a morphism of operads4

O −→ Ex. ⌟

Definition A.5.3. Let D̊n denote the n-dimensional open unit-disc of Rn. The
little n-discs operad Dn is the operad in Top with Dn(k) the space of embeddings

f :

k∐
i=1

D̊n −→ D̊n,

which restrict to a dilation followed by a translation on each component, and with
composition map γ given by composition:

γ(f, g1, . . . , gk) =

k∐
i=1

nk∐
j=1

D̊n
∐k

i=1 gi−−−−−→
k∐

i=1

D̊n f−→ D̊n. ⌟

Remark. There is an obvious analogue of the little n-discs operad, called the little
n-cubes operad, using open n-cubes (i.e. (0, 1)n) instead of n-discs, which is, of
course, isomorphic to Dn.

Definition A.5.4. An En-algebra, is an algebra over Dn. ⌟

4which is what you think it is.



Appendix B. Sheaves

This appendix gives the classical definition of sheaves with values in a complete
category on a topological space, and their stalks.

B.1. Classic sheaves

Definition B.1.1. For a topological space X we denote by XZar the poset category
of the topology of X (i.e. the open sets partially ordered by inclusion). ⌟

Definition B.1.2. Let X be a topological space. A C -valued presheaf on X is
a C -valued presheaf (in the categorical sense) on XZar. We write PSh(X;C ) :=
PSh(XZar;C ). For a presheaf F ∈ PSh(X;C ) we write (−)|AB : F (A) −→ F (B)
for F (B ⊂ A) (suppressing F – we will also often suppress A, when it is clear from
context). ⌟

Definition B.1.3. Let F be a C -valued presheaf on X and A ⊂ X. The stalk of
F at A is the filtered colimit

FA := colim
U∈Xop

Zar : A⊂U
F (U)

if it exists. An element of FA is called a germ of F near A. In case A = {x} is a
singleton we write Fx := F{x} and call the elements of Fx germs of F at x instead.
For any U ∈ XZar with A ⊂ U we thus have a canonical map F (U) −→ FA. ⌟

Remark. Note that, writing this out in the case C = Set, we can model FA by

FA = {(U, f) | U ∈ XZar, A ⊂ U, f ∈ F (U)}/ ∼,
where ∼ is the equivalence relation defined by (U, f) ∼ (U ′, f ′) if there exists
V ∈ XZar with A ⊂ V such that V ⊂ U ∩ U ′ and f |V = f ′|V . For f ∈ F (U) with
A ⊂ U we write fA (resp. fx) for the image of f under the canonical morphism
F (U) −→ FA (given by fA = (U, f)/∼).

Definition B.1.4. Let X be a topological space. A sheaf of sets5 on X is a
contravariant functor F : Xop

Zar −→ Set, which satisfies the following sheaf condition:
If fi ∈ F (Ui) is a collection of elements for an open cover {Ui}i∈I of an open subset
U ⊂ X, which satisfies fi|Ui∩Uj = fj |Ui∩Uj for all i, j ∈ I, then there exists a unique
f ∈ F (U) such that f |Ui = fi. ⌟

Classic examples are smooth and continuous maps to a fixed space.

B.2. Sheaves with values in a complete category

We note that we can write the sheaf condition as that the diagram

F (U)
∏

i∈I F (Ui)
∏

(i,j)∈I×I F (Ui ∩ Uj)
e a

b

is an equalizer, where a, b are the unique maps such that

pr(i,j) ◦ a = (pri(−))|
Ui

Ui∩Uj

pr(i,j) ◦ b = (prj(−))|
Uj

Ui∩Uj

for all (i, j) ∈ I × I and e is ((−)|UUi
)i∈I .

5or Set-valued sheaf on X

23
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Definition B.2.1. Let X be a topological space and C a complete category. A
C -valued sheaf on X is a contravariant functor F : Xop

Zar −→ C such that the
diagram

(B.1) F (U)
∏

i∈I F (Ui)
∏

(i,j)∈I×I F (Ui ∩ Uj)
e a

b

is an equalizer for any open covering {Ui}i∈I of an open subset U ⊂ X, where a, b
are the unique maps such that

pr(i,j) ◦ a = resUi

Ui∩Uj
◦ pri

pr(i,j) ◦ b = res
Uj

Ui∩Uj
◦ prj

for all (i, j) ∈ I × I. The category of C -valued sheaves on X is the full subcategory
Sh(X;C ) ↪→ PSh(X;C ) spanned by the C -valued sheaves. ⌟



Appendix C. The sheaf of
Galatius–Randal-Williams

Here we will define the Top-valued sheaves Ψd on Rn of d-dimensional manifolds
by Galatius–Randal-Williams following [4, section 2] in an almost one-to-one fashion
other than that we skip tangential structures. This means any errors introduced
are our own. In contrast to [4], our exposition is more verbose. To do this, we first
define its underlying sheaf of sets denoting it by Ψs

d.

Definition C.0.1. Let d, n ∈ N0. For U ⊂ Rn open, let Ψs
d,n(U) be the set of

all d-dimensional, smooth submanifolds M ⊂ U without boundary such that M
is a closed subset of U . For open subspaces V ⊂ U of Rn, define the restriction
function Ψs

d,n(U) −→ Ψs
d,n(V ) by M 7→M ∩V for all M ∈ Ψs

d,n(U). The restriction
functions assemble to make Ψs

d,n a sheaf of sets on Rn. We will suppress d and n
from the notation whenever convenient. ⌟

C.1. Construction of the topology

In this section, we will define a topology on Ψs
d,n(U) for all d, n ∈ N0 and all open

subspaces U ⊂ Rn giving a Top-valued sheaf which we will denote Ψd,n. Since we
do this for all d, n ∈ N0, we will consider d, n, and U ⊂ Rn fixed and suppress d and
n from notation. We will define this topology in terms of two preliminary topologies
on Ψs(U), namely the compactly supported topology and the K-topologies.

C.1.1. The compactly supported topology. First, we define the topological spaces
C∞

c (M,R) and Γc(νM ) for all M ∈ Ψs(U).

Definition C.1.1. Let M ∈ Ψs(U) and let C∞
c (M,R) denote the set of compactly

supported, real-valued, smooth functions onM . For a smooth map ϵ : M −→ (0,∞),
r ∈ N0, and an r-tuple X = (X1, . . . , Xr) of smooth vector fields6 on M , let B(ϵ,X)
denote the set

B(ϵ,X) := {f ∈ C∞
c (M,R) | |(X1 · · ·Xrf)(x)| < ϵ(x) for all x ∈M}.

We give C∞
c (M,R) the unique topology for which the collection f +B(ϵ,X)

∣∣∣∣∣∣∣
f ∈ C∞

c (M,R),
ϵ : M −→ (0,∞) is a smooth map, and

X is a finite tuple of smooth vector fields on M


of subsets form a sub-basis. ⌟

Definition C.1.2. For M ∈ Ψs(U), we let νM denote the normal bundle of M ,
which we consider to be a subbundle of the trivial n-dimensional R-vectorbundle εn
over M , namely the orthogonal complement of the tangent bundle. We let Γc(νM )
denote the set of compactly supported, smooth sections of νM . Post-composition
with the ith coordinate-projection on the fibres of εn yields a linear map

Γc(νM ) −→ C∞
c (M,R), defined by

(s : M −→ Rn) 7−→ (s ◦ pri : M −→ Rn −→ R).

6Note that r is allowed to be 0 and hence X is allowed to be empty.

25
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These n coordinate maps assemble to a linear injection Γc(νM ) ↪→ C∞
c (M,R)⊕n.

Give C∞
c (M,R)⊕n the product topology. We give Γc(νM ) the initial topology w.r.t.

this injection, i.e. the unique topology making this injection an embedding. ⌟

We now define the compactly supported topology on Ψs(U).

Definition C.1.3. The proof of the tubular neighbourhood theorem7 provides for
every M ∈ Ψcs(U) a partially defined function

cM : Γc(νM ) 99K Ψs(U)

defined on an open neighbourhood of M and given by s 7→ {x + s(x) | x ∈ M},
where defined. The compactly supported topology on Ψs(U) is the unique topology
on Ψs(U) making the functions

cM : Γc(νM ) 99K Ψs(U)

open embeddings for every M ∈ Ψs(U). We let Ψcs(U) denote Ψs(U) equipped with
the compactly supported topology. ⌟

Warning. It will be important for the topology and well-definedness of maps, that
we are only considering compactly supported maps. This gives us another warning:
The compactly supported topology Ψcs does not form a presheaf as the restriction
functions are not continuous.

C.1.2. The K-topology. For each compact subset K ⊂ U we will define the so-called
“K-topology” on Ψs(U). In order to do this we define a preliminary topology on the
stalk Ψs

K , as defined in definition B.1.3, of Ψs near K, which depends on U .

Definition C.1.4. Let K ⊂ U be compact. We give Ψs
K the quotient topology of

Ψcs(U) with respect to the canonical (surjective) projection to the stalk.

Ψcs(U)
πK−−→ Ψs

K .

This topology depends on U . Therefore, we will denote Ψs
K equipped with this

topology by (Ψs|U )K (i.e. the stalk of the restriction of Ψs to U near K). ⌟

Definition C.1.5. The K-topology on Ψs(U) is the initial topology with respect to
the canonical projection function

πK : Ψs(U) −→ (Ψs|U )K .
We let ΨK(U) denote Ψs(U) equipped with the K-topology. ⌟

We use the following lemma in the definition of the myopic topology in the
following section.

Lemma C.1.6. If K ⊂ L are compact subsets of U , then the identity function

ΨL(U)
ids

−−→ ΨK(U)

is continuous (i.e. the L-topology is finer than the K-topology).

Proof. Using functoriality of taking stalks, we get the commutative diagram

ΨL(U) (Ψs|U )L Ψcs(U)

ΨK(U) (Ψs|U )K

πL

ids πK (−)K⊂L

πL

πK

πK

in Set. All the projection functions except πK : ΨL(U) −→ (Ψs|U )K are continuous
by definition. Since πL : Ψ

cs(U) −→ (Ψs|U )L is a quotient map, the function
labelled (−)K⊂L is continuous and so πK : ΨL(U) −→ (Ψs|U )K is continuous by
commutativity. It now follows that ids is continuous by definition of ΨK(U). □

71, Theorem 11.4 and the paragraph after its proof, since M may not be compact.
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C.1.3. The myopic topology. Finally, we will define what the author has taken to
calling the “myopic” (i.e. nearsighted) topology on Ψs(U).

Definition C.1.7. The myopic topology on Ψs(U) is the initial topology with
respect to the collection

{Ψs(U)
ids

−−→ ΨK(U)}K ⊂
cpt.

U

of functions, and we let Ψ(U) denote Ψs(U) equipped with this topology. ⌟

Remark. This means we can write

Ψ(U) := lim
K∈(Ucpt)op

ΨK(U),

where Ucpt is the poset category of compact subsets of U ordered by inclusion and
where all maps in the limit are the identity function.

C.2. As a sheaf of topological spaces

Having defined Ψ in the previous section, we will in this section show that it
forms a Top-valued sheaf.

Lemma C.2.1. Let V ⊂ U be open subsets of Rn. Then the restriction function
r : Ψcs(U) −→ Ψcs(V ) is open.

Proof. For each M ∈ Ψcs(U) we have the diagram

(C.1)

Γc(νM ) Ψcs(U)

Γc(νM∩V ) Ψcs(V ),

cM

rz

cM∩V

where z denotes the map extending sections with 0. It should be clear that z is
both well-defined (remember the sections are compactly supported) and continuous.
Let A ⊂ Ψcs(U) be open. For each M ∈ A define

AM := cM∩V (z
−1(c−1

M (A))) ⊂ Ψcs(V )

and note that AM is open, since z and cM are continuous and cM∩V is open.
Note that r(M) ∈ AM for each M ∈ A, since cM (z(0)) = cM (0) = M and
cM∩V (0) = M ∩ V = r(M). Further noting, that r|im zM ◦ zM = idAM

gives
AM ⊂ r(A) for all M ∈ A allowing us to conclude that

r(A) =
⋃

M∈A

AM ,

which implies r is open. □

Lemma C.2.2. Let K ⊂ U be compact, ϵ ∈ R such that 0 < 4ϵ ≤ dist(K,Rn\U),
λ : U −→ [0, 1] a smooth function satisfying

λ(x) =

{
1 dist(x,K) ≤ 2ϵ

0 dist(x,K) ≥ 3ϵ,

V ⊂ U any open subset containing the support of λ, and M ∈ Ψcs(U). The
function λ̄ : Γc(νM ) −→ Γc(νM∩V ) given by multiplication by λ is continuous. If
we let z : Γc(νM∩V ) −→ Γc(νM ) denote the continuous function given by extending
sections with 0, then the diagram

Γc(νM∩V ) Γc(νM ) Ψcs(U)

Γc(νM ) Ψcs(U) (Ψs|U )K

z cM

πKλ̄

cM πK
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commutes after restricting to an open neighbourhood of the 0-section.

Proof. It should be clear, that λ̄ is continuous.
Let 0 ∈ Γc(νM ) denote the 0-section of νM . Let U1 be an open neighbourhood of 0

on which cM is defined. Note that λ̄(z(0)) = 0, so 0 is an element of U1∩(λ̄◦z)−1(U1).
Now define

U0 := U1 ∩ (λ̄ ◦ z)−1(U1) ∩ {s ∈ Γc(νM ) | |s(x)| < ϵ for all x ∈M}

and note that U0 is an open neighbourhood of 0. We will now show that the diagram
commutes when restricted to U0.

For each r ∈ R>0 letKr denote the open set {x ∈ U | dist(x,K) < r}. Let s ∈ U0.
We have to show that cM (s) and cM (z(λ̄(s))) agree on an open neighbourhood
of K. We show, they agree on Kϵ. Assume, for the sake of contradiction, that
cM (s)∩Kϵ ̸= cM (z(λ̄(s)))∩Kϵ. This allows us to assume without loss of generality,
that there exists x ∈ cM (s) ∩Kϵ such that x /∈ cM (z(λ̄(s))) ∩Kϵ and fix such an
x. The point x is of the form x = x′ + s(x′) for a unique point x′ ∈ M , since
x ∈ cM (s). We cannot have x′ ∈ K2ϵ because s|M∩K2ϵ

= z(λ̄(s))|M∩K2ϵ
. This

means dist(x′,K) ≥ 2ϵ. But, because x ∈ Kϵ, we must have ϵ ≤ |x− x′| = |s(x′)|,
so since s ∈ U0, which yields |s(x′)| < ϵ, we have a contradiction. □

Lemma C.2.3. The quotient map πK : Ψcs(U) −→ (Ψs|U )K is open.

Proof. We omit the proof due to lack of time. This is [4, Lemma 2.5]. □

Lemma C.2.4. Let K ⊂ U be compact. If V ⊂ U is an open subset containing
K, then the function ρ : (Ψs|U )K −→ (Ψs|V )K induced on stalks by the restriction
r : Ψcs(U) −→ Ψcs(V ) is an open embedding.

Proof. It suffices to show, that ρ is injective, continuous, and open. That ρ is
injective is clear.

We will check continuity of ρ on an open cover. By definition {im cM}M∈Ψcs(U) is
an open cover of Ψcs(U), so since πK is open and surjective, {imπK ◦ cM}M∈Ψcs(U)

is an open cover of (Ψs|U )K . This is the open cover, we will check continuity of ρ
on. Let M ∈ Ψcs(U) and pick λ̄ : Γc(νM ) −→ Γc(νM∩V ) as in lemma C.2.2. We get
the diagram

Γc(νM ) Ψcs(U) (Ψs|U )K

Γc(νM∩V ) Ψcs(V ) (Ψs|V )K

cM

λ̄

πK

r ρ

cM∩V πK

in Set, where the right-hand square commutes (by definition) and, for a sufficiently
small neighbourhood of the 0-section of νM , the outer rectangle commutes by
lemma C.2.2 and commutativity of (C.1). We know, all labeled functions except r
and ρ are continuous, and so ρ◦πK ◦cM is continuous. Thus, since the (co)restriction
of πK ◦ cM is a quotient map,8 we get that ρ is continuous on imπK ◦ cM .

That ρ is open follows from commutativity of the right-hand square; ρ precom-
posed with the surjective map πK is open (since both r and πK are open), and so ρ
is open. □

Lemma C.2.5. The construction Ψ forms a presheaf.

8this is because πK is a quotient map and cM is a quotient map after corestricting to its image
and quotient maps are closed under composition and closed under restricting to a subspace while
corestricting to the image of that subspace.



GMTW 29

Proof. Let V ⊂ U be open subsets of Rn. We will show that the restriction
(−)|V : Ψ(U) −→ Ψ(V ) is continuous. By definition, (−)|V : Ψ(U) −→ Ψ(V ) is
continuous if and only if

Ψ(U)
(−)|V−−−−→ Ψ(V )

ids

−−→ ΨK(V )

is continuous for all compact subsets K ⊂ V . Let K be a compact subset of V .
Since

Ψ(U) Ψ(V )

ΨK(U) ΨK(V )

(−)|V

ids ids

(−)|V

is commutative and ids : Ψ(U) −→ ΨK(U) is continuous (by definition), it suffices
to show that (−)|V : ΨK(U) −→ ΨK(V ) is continuous. Continuity of

(−)|V : ΨK(U) −→ ΨK(V )

follows from commutativity of

ΨK(U) ΨK(V )

(Ψs|U )K (Ψs|V )K

(−)|V

πK πK

ρ

and that ΨK(V ) is initial w.r.t. πK . □

Lemma C.2.6. Let I ̸= ∅ be a finite set. If Ki ⊂ U is compact for each i ∈ I and
K =

⋃
i∈I Ki, then the diagonal map δ : ΨK(U) −→

∏
i∈I Ψ

Ki(U) is an embedding.

Proof. We will show that ΨK(U) has the initial topology w.r.t. the maps

{ΨK(U)
ids

−−→ ΨKi(U)}i∈I .

It is a formal consequence of this, that δ is an embedding:
Since ids : ΨK(U) −→ ΨKi(U) is injective, δ is injective, and so to show that δ is

an embedding we simply need to show that the left-inverse δ−1 of δ|im δ is continuous.
The function δ−1 : im δ −→ ΨK(U) is continuous if and only if the compositions

im δ
δ−1

−−→ ΨK(U)
ids

−−→ ΨKi(U)

are continuous for all i ∈ I, and this is the case, since they are just the ith projection
restricted to im δ.

We will now show ΨK(U) has the initial topology w.r.t. {ΨK(U)
ids

−−→ ΨKi(U)}i∈I :
It is clear (once one notes, it is well-defined) that the diagram

(C.2) (Ψs|U )K
∏
i∈I

(Ψs|U )Ki

∏
(i,j)∈I×I

(Ψs|U )Ki∩Kj

((−)Ki⊂K)i∈I a

b

in Top forgets to an equalizer diagram in Set, where a, b are the unique maps such
that

pr(i,j) ◦ a = (pri(−))|
Ui

Ui∩Uj

pr(i,j) ◦ b = (prj(−))|
Uj

Ui∩Uj
.

Therefore, we have for any A ⊂ (Ψs|U )K that

(C.3) ((−)Ki⊂K)i∈I(A) = im δ ∩
⋂
i∈I

pr−1
i ((−)Ki⊂K(A)).
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Since the map πL : Ψ
cs(U) −→ (Ψs|U )L is surjective and open for all compact

L ⊂ U , it follows from commutativity of

(Ψs|U )K Ψcs(U)

(Ψs|U )Ki
,

(−)Ki⊂K

πK

πKi

that (−)Ki⊂K is open for all i ∈ I. Since each (−)Ki⊂K is open, it follows from
(C.3) that ((−)Ki⊂K)i∈I is relatively open (here we use that I is finite). The map
((−)Ki⊂K)i∈I is injective, because (C.2) forgets to an equalizer diagram in Set, and
so ((−)Ki⊂K)i∈I is an embedding. Since ((−)Ki⊂K)i∈I is an embedding ΨK(U)
has the initial topology w.r.t. ((−)Ki⊂K)i∈I (and the diagram forms an equalizer
diagram in Top). Since the product topology is initial w.r.t. the projections, we
have that ΨK(U) has the initial topology w.r.t. {(−)Ki⊂K}i∈I . Now, it follows from
the commutative diagram

ΨK(U) ΨKi(U)

(Ψs|U )K (Ψs|U )Ki

ids

πKinitial πKi initial

(−)Ki⊂K

for each i ∈ I and left-cancel-ability of being initial w.r.t., that ΨK(U) has the

initial topology w.r.t. the maps {ΨK(U)
ids

−−→ ΨKi(U)}i∈I . □

Theorem C.2.7. The presheaf Ψ is a sheaf.

Proof. We have to show that Ψ lifts the sheaf condition of Ψs to Top. Let U be an
open subset of Rn and let {Ui}i∈I be an open cover of U . We have to show, that

(C.4) Ψ(U)
∏

i∈I Ψ(Ui)
∏

(i,j)∈I×I Ψ(Ui ∩ Uj)
e a

b

is an equalizer diagram in Top, where the maps are defined as in definition B.2.1.
We do this by showing it exhibits the universal property:

Let X be a topological space and let f : X −→
∏

i∈I Ψ(Ui) be a continuous map

such that af = bf . Since Ψs is a sheaf of sets, there is a unique function f̃ such that
f = ef̃ . Showing that (C.4) exhibits the universal property amounts to showing

that f̃ is continuous. By definition of Ψ(U), the function f̃ is continuous if and only
if the composition

X
f̃−→ Ψ(U)

ids

−−→ ΨK(U)

is continuous for all compact subsets K ⊂ U . Let K ⊂ U be a compact subset.
Use that K is compact, to pick a finite sub-cover {Vi}i∈J of {Ui}i∈I of K and a
Lebesgue number ϵ of this cover. Now define

Ki := {x ∈ K ∩ Vi | dist(x,K ∩ Vi\K) ≥ ϵ}

for all i ∈ J , and note that K =
⋃

i∈J Ki, and that Ki is compact for all i ∈ J .
Since the diagonal δ is an embedding (lemma C.2.6) we have that

X
f̃−→ Ψ(U)

ids

−−→ ΨK(U)

is continuous if and only if

X
f̃−→ Ψ(U)

ids

−−→ ΨK(U)
δ−→

∏
j∈J

ΨKj (U)
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is continuous, which is continuous if and only if

(C.5) X
f̃−→ Ψ(U)

ids

−−→ ΨK(U)
δ−→

∏
j∈J

ΨKj (U)
pri−−→ ΨKi(U)

is continuous for all i ∈ J . Let i ∈ J and note that (C.5) equals

X
f̃−→ Ψ(U)

ids

−−→ ΨKi(U)

and, since ρ is an embedding (lemma C.2.4), we have that X
f̃−→ Ψ(U)

ids

−−→ ΨKi(U)

is continuous if and only if X
f̃−→ Ψ(U)

ids

−−→ ΨKi(U)
ρ−→ ΨKi(Vi) is continuous. Using

commutativity of the diagram

X Ψ(U) ΨKi(U)

∏
j∈I Ψ(Uj) Ψ(Vi) ΨKi(Vi),

f̃

f

ids

e
r ρ

pri ids

we see that this is the case, finishing the proof. □

Theorem C.2.8. If U and V are open subsets of Rn, then the function

p : Emb(U, V )×Ψ(V ) −→ Ψ(U)

defined by (j,M) 7→ j−1(M) is well-defined and continuous.

Proof (sketch). The function p is clearly well-defined.
The function p is continuous if and only if the compositions

Emb(U, V )×Ψ(V )
p−→ Ψ(U)

ids

−−→ ΨK(U)

are continuous for every compact K ⊂ U , and each of these is continuous if and
only if the composition

Emb(U, V )×Ψ(V )
p−→ Ψ(U)

ids

−−→ ΨK(U)
πK−−→ (Ψs|U )K

is continuous. We will now show this is the case for any given compact subset
K ⊂ U . We will check the continuity locally. Let Diffc(U) denote the subspace of
Diff(U) (with the compact-open topology) consisting of those f for which f − idU
is compactly supported. Let j0 ∈ Emb(U, V ). Pick a map λ ∈ C∞

c (U, [0, 1]) with
K ⊂ int(λ−1(1)). Let

ϕ : Emb(U, V ) 99K Diffc(U)

be the partially defined map given by

ϕ(j)(x) = (1− λ(x))x+ λ(x) · j−1
0 (j(x))

for all j in a sufficiently small neighbourhood of j0.
Let U0 denote an open neighbourhood of j0 ∈ Emb(U, V ) on which ϕ is defined.

Consider the diagram

U0 ×Ψ(V ) Emb(U, V )×Ψ(V ) Ψ(U) ΨK(U)

Diffc(U)×Ψ(U) Ψ(U) (Ψs|U )K ,

ϕ×j−1
0 (−)

p ids

πK

α πK

where α is the right action of Diffc(U) on Ψ(U) given by precomposition. Now note
that j(x) = j0(ϕ(j)(x)) for all j ∈ U0 and all x in a sufficiently small neighbourhood
of K, by definition of ϕ, so the diagram is commutative.

We will now sketch why ϕ, j−1
0 (−), and α are continuous. Continuity of ϕ follows

from general properties of the compact-open topology. Continuity of j−1
0 (−) follows
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from j−1
0 (−) : Ψcs(V ) −→ Ψcs(U) being continuous (which can be checked using

our subbasis for Γc(Rn) and the open embeddings cM ) and commutativity of the
diagram

Ψ(V ) ΨK(V ) (Ψs|V )K Ψcs(V )

Ψ(U) ΨK(U) (Ψs|U )K Ψcs(U),

ids

j−1
0 (−)

πK

j−1
0 (−) J

πK

j−1
0 (−)

ids πK πK

where J is the unique function making the diagram commute, for all compact K ⊂ V .
Continuity of α is proved analogously to j−1

0 (−).
Since ϕ and j−1

0 (−) are continuous, it follows that p is continuous when restricted
to U0 ×Ψ(U) and thus p is continuous. □



Appendix D. Some theory from GMTW

In this appendix we define some of the technical tools of [3] and [6]. The author
originally attempted to read those before switching to [4] and wants to include some
interesting points he learned when reading those. so, all the theory in this appendix
comes from those.

We generalize C -valued sheaves on topological spaces to C -valued sheaves on the
category X . Then we introduce concordance on - and geometric realization of -
sheaves of sets on X and note, that the latter represents the former. Concordance
gives us a criterion for checking, on the sheaf level, whether the realization of a
morphism of sheaves of sets on X is a weak homotopy equivalence. This criterion
plays a major rôle in [3].

Warning. The contents of this appendix are almost completely irrelevant for the
main sections of this thesis and their quality may be spotty.

Definition D.0.1. We let X denote the category of smooth, finite-dimensional
manifolds without boundary and smooth maps between them. ⌟

D.1. Sheaves on X with values in a complete category

Definition D.1.1. Let C be a complete category. A C -valued sheaf on X is a
contravariant functor F : X op −→ C such that the composition

Xop
Zar

ιop

↪−−→X op F−→ C

is a C -valued sheaf on X for all X ∈X , where ι : XZar ↪→X denotes the (non-full)
inclusion. For a smooth map f in X we denote F (f) by f∗ suppressing F . The
category of C -valued sheaves on X is the full subcategory Sh(X ;C ) ↪→ PSh(X ;C )
spanned by C -valued sheaves on X . ⌟

Definition D.1.2. If F ∈ Sh(X ;C ), X ∈X , and A ⊂ X we denote the stalk of

Xop
Zar ↪→X op F−→ C (if it exists) by FA, suppressing X. ⌟

D.2. Concordance

In this subsection, we will look at Set-valued sheaves on X .
Note that the extended (or open) simplices

∆n
e := {(t0, . . . , tn) ∈ Rn+1 | t0 + · · ·+ tn = 1}

form a cosimplicial object in X (with the evident face- and degeneracy-maps) which
we will denote by ∆e : ∆ −→X .

Definition D.2.1. Let F ∈ Sh(X ;Set). The geometric realization of F , is the
geometric realization of the simplicial set given by the composition

∆op ∆op
e−−−→X op F−→ Set .

Clearly, geometric realization forms a functor |−|s : Sh(X ;Set) −→ Top. We
denote the geometric realization of F by |F |s. ⌟

This directly motivates the following definition.

Definition D.2.2. We say that a map F −→ G in Sh(X ;Set) is a weak equivalence
if the induced map |F |s −→ |G |s is a weak homotopy equivalence. ⌟

33
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We will now define a functor [−] : Sh(X ;Set) −→ PSh(X ;Set) that geometric
realization will represent (in the sense of theorem D.2.7) called concordance.

Definition D.2.3. Let F ∈ Sh(X ;Set) and X ∈X . We define the concordance
relation ∼ on F (X) by letting t0 ∼ t1 for t0, t1 ∈ F (X), if there exists s ∈ F (X×R)
such that

sX×(−∞,0] = (pr∗(t0))X×(−∞,0] and sX×[1,∞) = (pr∗(t1))X×[1,∞).

In this case we say that t0 and t1 are concordant, that s is a concordance from t0 to
t1, and we may write t0 ∼s t1. ⌟

Though the following is a rather routine check – and might very well be apparent
to the reader – we include it for thoroughness anyway.

Proposition D.2.4. If F ∈ Sh(X;Set) and X ∈ X , then concordance is an
equivalence relation on F (X). Denoting the set of concordance classes of F (X) by
F [X], this assembles to a functor [−] : Sh(X ;Set) −→ PSh(X ;Set).

Proof. For reflexivity, we note that pr∗t is a concordance t ∼ t for all t ∈ F (X).
Let r1/2 : R −→ R denote the diffeomorphism defined by reflecting about 1/2 ∈ R.
If t0 ∼s t1 then t1 ∼r∗

1/2
(s) t0 which gives symmetry.

For transitivity, assume t0 ∼s0 t1 and t1 ∼s1 t2. Pick smooth, increasing maps
ϕ, ψ : R −→ R such that

ϕ(x) =

{
x, x ≤ 0

x− 2/3, x ≥ 1
and ψ(x) =

{
x+ 2/3, x ≤ 0

x, x ≥ 1.

Define

s0 := (idX ×ϕ|(−∞,2/3)
(−∞,4/3))

∗(s0|(−∞,4/3)) ∈ F (X × (−∞, 2/3)) and

s1 := (idX ×ψ|(1/3,∞)
(−1/3,∞))

∗(s1|(−1/3,∞)) ∈ F (X × (1/3,∞)).

Note that

s0|X×(1/3,2/3) = pr∗t1 = s1|X×(1/3,2/3),

so by the sheaf property there exists a unique s ∈ F (X × R) such that

s|X×(−∞,2/3) = s0 and s|X×(1/3,∞) = s1.

It now follows, that t0 ∼s t2. □

Warning. If F ∈ Sh(X ;Set), then F [−] is in general not a sheaf.

We will need a relative version of concordance for our results.
For F ∈ Sh(X ;Set) and A ⊂ X a closed subset, note that the projection

X × R −→ X induces a function pr∗A : FA −→ FA×R defined by

[(U, s)]
pr∗A7−−→ [(U × R,pr∗s)].

Definition D.2.5. Let F ∈ Sh(X ;Set), X ∈X , A ⊂ X be a closed subset and
s ∈ FA. Let F (X,A; s) denote the set {t ∈ F (X) | tA = s}. We define the relative
concordance relation ∼ rel. A on F (X,A; s) by letting t0 ∼ t1 rel. A if there exists
s′ ∈ F (X × R) such that

t0 ∼s′ t1 and s′A×R = pr∗A(s).

In this case we say that t0 and t1 are concordant relative to A, that s′ is a concordance
relative to A from t0 to t1, we may write t0 ∼s′ t1 rel. A, and we denote the set of
relative concordance classes F [X,A; s]. ⌟
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Lemma D.2.6. A map τ : F −→ G in Sh(X ;Set) is a weak equivalence if the
induced map

F [X,A; s] −→ G [X,A; τ(s)]

is surjective for all (X,A, s) as in definition D.2.5.

Proof. This is [6, Lemma 2.4.4]. □

Theorem D.2.7. If F ∈ Sh(X ;Set), x0 ∈ X ∈X , A ⊂ X a closed subset of X,
and s ∈ FA, then we have a bijection

F [X] ∼= [X, |F |s],
natural in X. More generally we have a natural bijection

F [X,A; s] ∼= [(X,A), (|F |s, s)].
Proof. See appendix A of [6]. □

D.3. Realising a sheaf of categories on X

Warning. In appendix D.2, we defined |F |s for a sheaf of sets on X and this was
a topological space. We will now define |F |c for a sheaf of categories and this will
be a topological category. In the literature these are both denoted |F |, which can
cause confusion.

Definition D.3.1. We note, that we have an isomorphism of categories

Sh(X ;Cat) = Sh(X ;Cat(Set)) ∼= Cat(Sh(X ;Set)).

Realizing a Set-valued sheaf on X commutes with finite limits, since geometric
realization of simplicial sets commutes with finite limits, and limits are calculated
point-wise in functor categories. Thus, the realization functor induces a functor
|−|s : Cat(Sh(X ;Set)) −→ Cat(Top). We let |−|c denote the composition

|−|c : Sh(X ;Cat) ∼= Cat(Sh(X ;Set))
|−|s−−→ Cat(Top)

and call it realization of a Cat-valued sheaf on X . ⌟

Remark. Writing it out, we have that

ob |F |c = |N0F |s and mor |F |c = |N1F |s
which is well-defined since the nerve is a right-adjoint so it induces a functor

Sh(X ;Cat)
N−→ Sh(X ; sSet)

and limits are calculated point-wise, so we get N0F , N1F ∈ Sh(X ;Set).

D.4. Modelling the classifying space at the sheaf level

Here we construct a functor β : Sh(X ;Cat) −→ Sh(X ;Set), which will form a
model of the classifying space at the level of sheaves in the sense of theorem D.4.4.
For this we will fix an infinite set J for indexing.

Definition D.4.1. Let X be a topological space, and let U = {Ui}i∈I be a locally
finite open cover of X. We define the topological category XU ∈ Cat(Top) by

obXU =
∐

∅̸=R⊂I

XR and morXU =
∐

∅̸=R⊂I

∐
R⊂S⊂I

XS ,

where XR denotes
⋂

i∈R Ui for every R ⊂ I, with source and target morphisms
defined on XS indexed by R ⊂ S by

d1 : XS

idXS−−−→ XS ↪→
∐
R⊂I

XR and d0 : XS ↪→ XR ↪→
∐
R⊂I

XR.

The other structure maps are uniquely determined. ⌟
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Remark. Unravelling the definition gives, thatXU is a topological poset with elements
of the form (R, x), where R ⊂ I and x ∈ XR and the partial order defined by

(S, x) ≤ (R, y) if and only if R ⊂ S and x = y.

Remark. Note that an internal hom-functor is a right-adjoint and so induces a functor
on internal categories: If C ∈ Cat(Top) satisfies that C0 and C1 are CGWH, where
we have an internal hom, then Hom(−, C), i.e. Hom(−, C)i := Hom(−, Ci) for
i = 0, 1, is also a topological category.

Notation. For X ∈X we let X̃ denote the sheaf C∞(−, X) on X .

Definition D.4.2. Let F ∈ Sh(X ;Cat). Define βF , as a presheaf of sets, on
objects by

βF (X) =

{
(U ,Φ)

∣∣∣∣∣ U = {Uj}j∈J a locally finite open cover of X

Φ: X̃U −→ F in Sh(X ;Cat)

}
and on morphisms by pulling back. ⌟

Proposition D.4.3. The construction of β in definition D.4.2 assembles to a
functor Sh(X ;Cat) −→ Sh(X ;Set).

Proof. This is stated beneath [6, def. 4.1.1]. The definition of β in [6] is worded
slightly differently, but it is equivalent to definition D.4.2. □

Theorem D.4.4. If F ∈ Sh(X ;Cat) then |βF |s is weakly equivalent to B|F |c.

Very rough proof sketch. To show this it suffices to show that

βF [X] ∼= [X,B|F |c]
naturally in X. Let (U ,Φ) ∈ βF (X). A partition of unity {λj : j ∈ J} subordinate
to U defines a map from λ : X −→ BXU . The counit ϵ of |−| ⊣ Sing gives a

continuous functor ϵX : |Sing(XU )| = |X̃U |c −→ XU . Since ϵX induces a level-wise

weak equivalence NkϵX : Nk|X̃U |
≃−→ NkXU we get a weak equivalence BXU ≃

B|X̃U |. So we get the composition

X
λ−→ BXU ≃ B|X̃U |

B|Φ|−−−→ B|F |
the homotopy class of which is unique up to concordance of (U ,Φ) ∈ βF (X)
and does not depend on the choice of partition of unity. This defines a map
βF [X] −→ [X,B|F |] and [3] claims that this is a bijection the proof of which is in
[6, Appendix A]. □
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